The notebook is available here: https://github.com/starkit/starkit/tree/master/docs/io/reading_moehler_telluric.ipynb


[64]:
import re
import os
from glob import glob

import pandas as pd
import numpy as np

from astropy.io import fits
from astropy.table import Table
from astropy import units as u, constants as const

from starkit.gridkit.io.process import BaseProcessGrid
from starkit.gridkit import load_grid
from scipy import ndimage as nd
from scipy.interpolate import interp1d

[67]:
moehler_bib = """@ARTICLE{2014A&A...568A...9M,
       author = {{Moehler}, S. and {Modigliani}, A. and {Freudling}, W. and
        {Giammichele}, N. and {Gianninas}, A. and {Gonneau}, A. and
        {Kausch}, W. and {Lan{\c{c}}on}, A. and {Noll}, S. and {Rauch},
        T. and {Vinther}, J.},
        title = "{Flux calibration of medium-resolution spectra from 300 nm to 2500 nm:
        Model reference spectra and telluric correction}",
      journal = {\aap},
     keywords = {standards, techniques: spectroscopic, Astrophysics - Instrumentation and
        Methods for Astrophysics, Astrophysics - Solar and Stellar
        Astrophysics},
         year = 2014,
        month = Aug,
       volume = {568},
          eid = {A9},
        pages = {A9},
          doi = {10.1051/0004-6361/201423790},
       adsurl = {https://ui.adsabs.harvard.edu/#abs/2014A&A...568A...9M},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}


"""
moehler_telluric_meta = pd.Series([moehler_bib, ['airmass', 'pwv'], 'vacuum', 'Angstrom', '1'],
                               index=[u'bibtex', u'parameters', u'wavelength_type', u'wavelength_unit', 'flux_unit'], )

[51]:
class MoehlerTelluric(BaseProcessGrid):
    R_initial = 60000.
    R_initial_sampling=1

    def __init__(self, index, input_wavelength, meta, wavelength_start=0*u.angstrom, wavelength_stop=np.inf*u.angstrom,
                 R=None, R_sampling=4):
        super(MoehlerTelluric, self).__init__(index, input_wavelength, meta, wavelength_start=wavelength_start,
                                         wavelength_stop=wavelength_stop, R=R, R_sampling=R_sampling)
    def load_flux(self, fname):
        return Table.read(fname)['trans']

    def interp_wavelength(self, flux):
        cut_flux = flux[self.start_idx:self.stop_idx]
        rescaled_R = 1 / np.sqrt((1/self.R)**2 - (1/self.R_initial)**2)
        sigma = ((self.R_initial / rescaled_R) * self.R_initial_sampling
                 / (2 * np.sqrt(2 * np.log(2))))

        processed_flux = nd.gaussian_filter1d(cut_flux, sigma)
        output_flux = interp1d(self.cut_wavelength, processed_flux)(
            self.output_wavelength)
        return output_flux

Generating Index for Telluric Data

[22]:
lbl_telluric_pattern = re.compile('LBL_A(\d\d)_s0_w(\d\d\d).+?\.fits')
[54]:
fname_list = np.sort(glob('LBL*.fits'))
raw_index = pd.DataFrame(index=np.arange(len(fname_list)), columns=['airmass', 'pwv', 'filename'])
for i, fname in enumerate(fname_list):
    airmass, pwv = lbl_telluric_pattern.match(os.path.basename(fname)).groups()
    airmass = float(airmass) / 10.
    pwv = float(pwv) / 10.
    raw_index.iloc[i] = (airmass, pwv, fname)
[55]:
raw_index
[55]:
airmass pwv filename
0 1 0.5 LBL_A10_s0_w005_R0060000_T.fits
1 1 1 LBL_A10_s0_w010_R0060000_T.fits
2 1 1.5 LBL_A10_s0_w015_R0060000_T.fits
3 1 2.5 LBL_A10_s0_w025_R0060000_T.fits
4 1 3.5 LBL_A10_s0_w035_R0060000_T.fits
5 1 5 LBL_A10_s0_w050_R0060000_T.fits
6 1 7.5 LBL_A10_s0_w075_R0060000_T.fits
7 1 10 LBL_A10_s0_w100_R0060000_T.fits
8 1 20 LBL_A10_s0_w200_R0060000_T.fits
9 1.5 0.5 LBL_A15_s0_w005_R0060000_T.fits
10 1.5 1 LBL_A15_s0_w010_R0060000_T.fits
11 1.5 1.5 LBL_A15_s0_w015_R0060000_T.fits
12 1.5 2.5 LBL_A15_s0_w025_R0060000_T.fits
13 1.5 3.5 LBL_A15_s0_w035_R0060000_T.fits
14 1.5 5 LBL_A15_s0_w050_R0060000_T.fits
15 1.5 7.5 LBL_A15_s0_w075_R0060000_T.fits
16 1.5 10 LBL_A15_s0_w100_R0060000_T.fits
17 1.5 20 LBL_A15_s0_w200_R0060000_T.fits
18 2 0.5 LBL_A20_s0_w005_R0060000_T.fits
19 2 1 LBL_A20_s0_w010_R0060000_T.fits
20 2 1.5 LBL_A20_s0_w015_R0060000_T.fits
21 2 2.5 LBL_A20_s0_w025_R0060000_T.fits
22 2 3.5 LBL_A20_s0_w035_R0060000_T.fits
23 2 5 LBL_A20_s0_w050_R0060000_T.fits
24 2 7.5 LBL_A20_s0_w075_R0060000_T.fits
25 2 10 LBL_A20_s0_w100_R0060000_T.fits
26 2 20 LBL_A20_s0_w200_R0060000_T.fits
27 2.5 0.5 LBL_A25_s0_w005_R0060000_T.fits
28 2.5 1 LBL_A25_s0_w010_R0060000_T.fits
29 2.5 1.5 LBL_A25_s0_w015_R0060000_T.fits
30 2.5 2.5 LBL_A25_s0_w025_R0060000_T.fits
31 2.5 3.5 LBL_A25_s0_w035_R0060000_T.fits
32 2.5 5 LBL_A25_s0_w050_R0060000_T.fits
33 2.5 7.5 LBL_A25_s0_w075_R0060000_T.fits
34 2.5 10 LBL_A25_s0_w100_R0060000_T.fits
35 2.5 20 LBL_A25_s0_w200_R0060000_T.fits
36 3 0.5 LBL_A30_s0_w005_R0060000_T.fits
37 3 1 LBL_A30_s0_w010_R0060000_T.fits
38 3 1.5 LBL_A30_s0_w015_R0060000_T.fits
39 3 2.5 LBL_A30_s0_w025_R0060000_T.fits
40 3 3.5 LBL_A30_s0_w035_R0060000_T.fits
41 3 5 LBL_A30_s0_w050_R0060000_T.fits
42 3 7.5 LBL_A30_s0_w075_R0060000_T.fits
43 3 10 LBL_A30_s0_w100_R0060000_T.fits
44 3 20 LBL_A30_s0_w200_R0060000_T.fits
[41]:
wavelength = (Table.read(fname_list[0])['lam'] * u.micron).to(u.angstrom)
[68]:
moehler_telluric = MoehlerTelluric(raw_index, wavelength, moehler_telluric_meta,
                           wavelength_start=3001*u.angstrom,
                           wavelength_stop=25000*u.angstrom, R=50000,
                          R_sampling=4)
[69]:
moehler_telluric.to_hdf('moehler_telluric.hdf')
45it [00:01, 26.35it/s]
done
[70]:
moehler_telluric_grid = load_grid('moehler_telluric.h5')
starkit.gridkit.base - INFO - Reading index
starkit.gridkit.base - INFO - Discovered columns airmass, pwv
starkit.gridkit.base - INFO - Reading Fluxes
starkit.gridkit.base - INFO - Fluxes shape (45, 423987)
starkit.gridkit.base - INFO - Initializing spec grid
starkit.gridkit.base - INFO - Setting grid extent
[73]:
%pylab notebook

wave, t = moehler_telluric_grid()

plot(wave, t)
Populating the interactive namespace from numpy and matplotlib
[73]:
[<matplotlib.lines.Line2D at 0x10d5b8210>]
[ ]: