The notebook is available here: https://github.com/starkit/starkit/tree/master/docs/io/reading_bosz.ipynb


Preparing a raw BOSZ Grid installation

This is needed for making custom StarKit grids - not suitable for most users.

You first need to navigate to the Phoenix folder that contains the grid (‘bosz’)

[1]:
cd ~/data/skgrid/bosz/
/scigarfs/home/wkerzend/data/skgrid/bosz
[2]:
from starkit.gridkit.io.phoenix import PhoenixProcessGrid
from starkit.gridkit.io.bosz.process import BOSZProcessGrid
from starkit.gridkit.io.bosz.base import make_raw_index, make_grid_info, cache_bosz_grid
from starkit.gridkit import load_grid
import pandas as pd
from astropy import units as u
from astropy.io import fits
import numpy as np
import uuid
[3]:
#make_grid_info('bosz_grid_info.h5')
[4]:
#cache_bosz_grid()
[5]:
meta = pd.read_hdf('bosz_grid_info.h5', 'meta')
raw_index = pd.read_hdf('bosz_grid_info.h5', 'index')
wavelength = pd.read_hdf('bosz_grid_info.h5', 'wavelength')[0].values * u.Unit(meta['wavelength_unit'])
[43]:
for col in raw_index.columns[:-1]:
    raw_index[col] = raw_index[col].astype(np.float64)
raw_index.logg *= 0.1
[47]:
index_filter = (raw_index.teff.between(4000, 7000) &
 raw_index.logg.between(-1, 5) &
 raw_index.mh.between(-2.5, 0.5) &
 (raw_index.alpha == 0.0))

new_index = raw_index.loc[index_filter]
[54]:
bgrid = BOSZProcessGrid(new_index, wavelength, meta,
                           wavelength_start=2000*u.angstrom,
                           wavelength_stop=25000*u.angstrom, R=20000.0)
[55]:
bgrid.to_hdf('rcw86_fs1_bosz_grid.h5')
100% (10530 of 10530) |###################| Elapsed Time: 0:07:47 Time: 0:07:47
done
/lustre/home/wkerzend/miniconda3/envs/starkit/lib/python2.7/site-packages/pandas/core/generic.py:1299: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->values] [items->None]

  return pytables.to_hdf(path_or_buf, key, self, **kwargs)
[8]:
raw_index.drop('filename', axis=1)
[8]:
teff logg mh alpha
0 2300 0 0.5 0
1 2300 0.5 0.5 0
2 2300 1 0.5 0
3 2300 1.5 0.5 0
4 2300 2 0.5 0
5 2300 2.5 0.5 0
6 2300 3 0.5 0
7 2300 3.5 0.5 0
8 2300 4 0.5 0
9 2300 4.5 0.5 0
10 2300 5 0.5 0
11 2300 5.5 0.5 0
12 2300 6 0.5 0
13 2400 -0.5 0.5 0
14 2400 0 0.5 0
15 2400 0.5 0.5 0
16 2400 1 0.5 0
17 2400 1.5 0.5 0
18 2400 2 0.5 0
19 2400 2.5 0.5 0
20 2400 3 0.5 0
21 2400 3.5 0.5 0
22 2400 4 0.5 0
23 2400 4.5 0.5 0
24 2400 5 0.5 0
25 2400 5.5 0.5 0
26 2400 6 0.5 0
27 2500 -0.5 0.5 0
28 2500 0 0.5 0
29 2500 0.5 0.5 0
... ... ... ... ...
47338 14000 2 -4 -0.4
47339 14000 2.5 -4 -0.4
47340 14000 3 -4 -0.4
47341 14000 3.5 -4 -0.4
47342 14000 4 -4 -0.4
47343 14000 4.5 -4 -0.4
47344 14000 5 -4 -0.4
47345 14000 5.5 -4 -0.4
47346 14000 6 -4 -0.4
47347 14000 6.5 -4 -0.4
47348 14500 2 -4 -0.4
47349 14500 2.5 -4 -0.4
47350 14500 3 -4 -0.4
47351 14500 3.5 -4 -0.4
47352 14500 4 -4 -0.4
47353 14500 4.5 -4 -0.4
47354 14500 5 -4 -0.4
47355 14500 5.5 -4 -0.4
47356 14500 6 -4 -0.4
47357 14500 6.5 -4 -0.4
47358 15000 2 -4 -0.4
47359 15000 2.5 -4 -0.4
47360 15000 3 -4 -0.4
47361 15000 3.5 -4 -0.4
47362 15000 4 -4 -0.4
47363 15000 4.5 -4 -0.4
47364 15000 5 -4 -0.4
47365 15000 5.5 -4 -0.4
47366 15000 6 -4 -0.4
47367 15000 6.5 -4 -0.4

47368 rows × 4 columns

[13]:
flux = fits.getdata('PHOENIX-ACES-AGSS-COND-2011/Z+0.5/lte02300-0.00+0.5.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits')